MDL Mean Function Selection in Semiparametric Kernel Regression Models
نویسندگان
چکیده
منابع مشابه
Covariate selection for semiparametric hazard function regression models
We study a flexible class of non-proportional hazard function regression models in which the influence of the covariates splits into the sum of a parametric part and a time-dependent nonparametric part. We develop a method of covariate selection for the parametric part by adjusting for the implicit fitting of the nonparametric part. Our approach is based on the general model selection methodolo...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملPenalized Estimating Functions and Variable Selection in Semiparametric Regression Models.
We propose a general strategy for variable selection in semiparametric regression models by penalizing appropriate estimating functions. Important applications include semiparametric linear regression with censored responses and semiparametric regression with missing predictors. Unlike the existing penalized maximum likelihood estimators, the proposed penalized estimating functions may not pert...
متن کاملVariable Selection in Nonparametric and Semiparametric Regression Models
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
متن کاملEstimating the error distribution function in semiparametric additive regression models
We consider semiparametric additive regression models with a linear parametric part and a nonparametric part, both involving multivariate covariates. For the nonparametric part we assume two models. In the first, the regression function is unspecified and smooth; in the second, the regression function is additive with smooth components. Depending on the model, the regression curve is estimated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2008
ISSN: 1556-5068
DOI: 10.2139/ssrn.1130205